

HARDWARE ASSISTED STEALTHY DIVERSITY (CHECKMATE)

RAYTHEON BBN TECHNOLOGIES CORP

SEPTEMBER 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-180

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2013-180 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

SERGEY PANASYUK MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2012 – FEB 2013
4. TITLE AND SUBTITLE

HARDWARE ASSISTED STEALTHY DIVERSITY (CHECKMATE)

5a. CONTRACT NUMBER
FA8750-12-C-0098

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Joshua Edmison and Hina McCree

5d. PROJECT NUMBER
T2SD

5e. TASK NUMBER
HS

5f. WORK UNIT NUMBER
SD

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies Corp
10 Moulton Street
Cambridge, MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2013-180

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2013-2607
Date Cleared: 4 JUN 2013
13. SUPPLEMENTARY NOTES

14. ABSTRACT
CHECKMATE hardens homogenous computing environments from attacks through massive diversification of application
execution. The CHECKMATE proof-of-concept prototype achieves diversification by leveraging underutilized silicon in
today’s computer systems such as unused memory, extra processor cores, and other underutilized processors such as
graphical processing units (GPUs). Specifically, CHECKMATE introduces diversity in application execution by weaving
the execution of many unique but functionally equivalent instruction streams representing an application. By introducing
diversity at execution time, CHECKMATE greatly increases the effort required by an adversary to mount an attack
against a system with little impact on performance. A successful attack against a CHECKMATE-enabled system would
require successfully guessing the correct mixture of instruction streams and architectures before they are chosen at
execution time. The combinatorial explosion of possible execution paths and architectural variation makes a successful
navigation very improbable even with prior knowledge of the system components or the ability to guess at high speed.
CHECKMATE is applicable to a wide-range of applications from embedded systems to commodity devices and has been
shown to exhibit quantifiable security benefits.
15. SUBJECT TERMS

Diversity, diversification, attack, prevention, hardware, instruction set architecture, processor architecture, exponential,
platform hardening

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

51

19a. NAME OF RESPONSIBLE PERSON
SERGEY PANASYUK

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS
LIST OF FIGURES ... iii

LIST OF TABLES ... iv

1 SUMMARY .. 1

1.1 Quantification of Protection Benefits ... 2

1.2 Potential For Operational Deployment .. 3

1.3 Recommendations & Future Work .. 3

2 INTRODUCTION .. 4

3 METHODS, ASSUMPTIONS, AND PROCEDURES .. 6

3.1 Achieving Diversity through Heterogeneous, Remote Application Execution 6

3.1.1 Application Segmentation ... 6

3.1.2 Segmentation Experimental Setup .. 8

3.1.3 CHECKMATE Emulation Testbed .. 9

3.1.4 Remote Execution Interface .. 10

3.1.5 Segmentation Experiment and Results ... 14

3.2 Achieving Diversity via Synthetic Architectures ... 14

3.2.1 Instruction Encoding for Diversity ... 14

3.2.2 Implementing Instruction Encoding ... 16

3.2.3 Synthetic Architecture Experimental Results ... 22

3.3 Reducing the Attack Surface via Architectural Shifting .. 25

3.3.1 Implementation of Architectural Shifting ... 27

3.3.2 Instruction Multiplexing with QEMU .. 29

3.3.3 Combined Results of Synthetic Architectures and Architectural Shifting 30

4 RESULTS AND DISCUSSION ... 31

4.1 Key Finding 1: Exponential Increase in Protection due to Diversity 31

4.2 Key Finding 2: Attack Detection and Alerting .. 31

4.3 Key Finding 3: Attack Types Prevented .. 31

4.3.1 User Experience and Performance .. 32

5 CONCLUSIONS... 33

6 RECOMMENDATIONS .. 34

ii

6.1 Transition CHECKMATE to TRL5 and Deploy CHECKMATE at Small Scale in an
Operational Environment .. 34

6.1.1 Example CHECKMATE Enterprise Deployment Scenario 34

6.1.2 Sample Roll Out .. 34

6.1.3 Active Exploit Scenarios... 35

6.1.4 Alerting and Protection System .. 37

6.1.5 Autonomous Protection .. 37

6.2 Extend CHECKMATE to Operate on Additional Platforms ... 37

6.3 Develop Advanced Techniques for Achieving Synthetic, At-Scale Diversity in Future
Systems ... 38

6.4 Additional CHECKMATE Implementation Extensions and Enhancements 38

7 REFERENCES ... 40

APPENDIX ... 41

A.1 Initial Experimentation ... 41

A.1 Synthetic Attack Development... 42

A.2 Initial Findings ... 43

A.2.1 Attack Indicator .. 43

A.2.2 Architecture Limitations ... 43

A.2.3 Application Limitations .. 43

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS .. 44

iii

LIST OF FIGURES
Figure 1. CHECKMATE Adversary Effort .. 2
Figure 2. Typical CHECKMATE Prototype Configuration ... 6
Figure 3. Emulated Multi-Architecture System with Segmentation ... 7
Figure 4. Application Segmentation Process .. 7
Figure 5. Original OpenSSH Operation .. 8
Figure 6. Segmented OpenSSH Operation ... 9
Figure 7. Emulated multi-architecture system .. 10
Figure 8. Heterogeneous Remote Hardware System .. 11
Figure 9. Remote System Call Interface Block Diagram .. 11
Figure 10. Common Static and Dynamic System Calls .. 13
Figure 11. System Wide System Call Breakdown .. 13
Figure 12. Instruction Encoding Process .. 15
Figure 13. Instruction Decoding Process .. 16
Figure 14. Identifying Literal Pools with Symbol Table .. 17
Figure 15. Original QEMU Instruction Execution Process .. 18
Figure 16. Modified QEMU Instruction Execution Process ... 18
Figure 17. Original Hardware Instruction Execution Process .. 19
Figure 18. Modified Hardware Instruction Execution Process ... 19
Figure 19. Xilinx Zynq-7000 Block Diagram... 20
Figure 20. Zynq Memory Access Pathways ... 21
Figure 21: Hardware-based CHECKMATE Prototype .. 22
Figure 22: Typical CHECKMATE Experimental Setup .. 22
Figure 23. Instruction Encoding Average Attempts to Breach ... 23
Figure 24. Probability of Preventing Attack with Watchdog ... 25
Figure 25. Probability of Stopping Attacker with Increasing Number of Architecture Shifts 27
Figure 26. Instruction Multiplexing Block Diagram .. 28
Figure 27. Probability of Stopping Attacker with Increasing Frequency of Multiplexer Shift 29
Figure 28: Realtime CHECKMATE Experimental Results ... 30
Figure 29. Interpreted Code Injection Attack on Multiple Architectures 32
Figure 30. CHECKMATE Enterprise Deployment .. 35
Figure 31. Active Exploit Scenarios ... 36
Figure 32: Simple Multi-Architecture System .. 41
Figure 33. Normal SSH Authentication .. 42
Figure 34. SSH Authentication Under Attack .. 42

iv

LIST OF TABLES
Table 1. CHECKMATE Protection Summary.. 2
Table 2. CHECKMATE Protection Summary.. 32
Table 3. Active Exploit Scenarios .. 36
Table 4. Additional CHECKMATE Research .. 38

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1 SUMMARY

CHECKMATE (Hardware-assisted Platform Diversification for Secure Polymorphic
Computing) represents a fundamental advancement in computer architecture that neutralizes an
entire class of widespread attacks against monoculture computing environments through massive
diversification of application execution.

The goals of the CHECKMATE effort, both of which were achieved, are:

1. Establish the effectiveness of the CHECKMATE approach in preventing attacks and
evaluate performance

2. Develop a prototype CHECKMATE platform

The CHECKMATE prototype creates a very high degree of diversification by leveraging a
combination of underutilized silicon in today’s computer systems such as unused memory, extra
processor cores, available compute cycles, and other underutilized processors such as graphical
processing units (GPUs). CHECKMATE diversifies application execution by seamlessly
weaving the execution of many unique but functionally equivalent application instruction
streams across multiple, heterogeneous processors. The combinatorial explosion of possible
execution paths and architectural variation exponentially increases the effort required by an
adversary to mount an attack with little cost to the system. A successful attack against a
CHECKMATE-enabled system requires guessing the correct mixture of instruction streams and
architectures before they are picked by the system at execution time. As such, attacking a
CHECKMATE-enabled system is very difficult even with prior knowledge of the system
components, operation, and algorithms.

Unlike many defensive solutions, CHECKMATE provides an asymmetric advantage to the
defender. Figure 1 quantifies the exponential effort imposed upon adversaries as well as how
existing monoculture systems fail to prevent attack due to a lack of diversity. Table 1
summarizes CHECKMATE’s effectiveness against major attack classes. CHECKMATE
neutralizes machine code injection attacks representing approximately 50% of the reported
vulnerabilities in the Common Vulnerabilities and Exposures (CVE) database. For most
applications, CHECKMATE protection produces negligible performance impact and the
application degradation is imperceptible to the user.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

Table 1. CHECKMATE Protection Summary

CHECKMATE also provides the ability to robustly detect attacks and attack attempts. Failed
attacks against CHECKMATE are manifested as architecture mismatches or invalid instructions
that are easily detectable. The low probability of successful attack combined with robust
detection of attack attempts provides an opportunity to actively monitor, defend, or deploy
countermeasures prior to a successful attack. The CHECKMATE capability is substantially
different from monoculture systems where little or no opportunity exists to detect attacks through
hardware operation.

1.1 Quantification of Protection Benefits

A major shortcoming of many computer software and hardware defensive mechanisms is the
inability to provide a robust, quantitative assessment of protection. In contrast, the effectiveness
of CHECKMATE's protection against attack is quantified through both empirical experiments
and an analytical formulation. CHECKMATE's changes to computer architecture, such as the

Attack Type Protection
Machine Code Injection CHECKMATE able to protect against
Return Oriented Programming CHECKMATE offers limited protection
Interpreted Code Injection/SQL Injection CHECKMATE cannot protect against

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

Pr
ob

ab
ili

ty
 o

f S
to

pp
in

g
A

tta
ck

er

Number of Archiecture Shifts During Payload Execution

1

2

3

4

5

Current
technologies exist

in this space

Number of
possible

architectures

Figure 1. CHECKMATE Adversary Effort

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

addition of realtime, rapid switching between architectures called architectural shifting, provides
a foundation for robust quantitative assessment of the CHECKMATE approach. A rigorous
analytical model describing CHECKMATE’s protection capabilities is described in Sections 3.2
and 3.3.

1.2 Potential For Operational Deployment

At the conclusion of the 12-month CHECKMATE effort both the software and hardware
CHECKMATE prototypes are at Technology Readiness Level (TRL) 4. The CHECKMATE
implementation of synthetic diversity through high-speed emulation provides a foundation for
rapidly transitioning CHECKMATE to TRL 5 and beyond, as well as protecting operational
commodity systems with the CHECKMATE approach. Synthetic diversity preserves the user
experience and exhibits sufficient performance on commodity systems for applications that are
not compute or memory bound. The current CHECKMATE implementation is tailored to
Linux/Unix-based systems but the CHECKMATE concept fundamentally applies to all systems
including Microsoft Windows, and Mac OS. In general, CHECKMATE is applicable to any
system that has the ability to emulate another processor architecture or incorporate multiple
physical processors. QEMU is an example of this type of capability. The CHECKMATE
hardware implementation serves as a reference design for new systems.

1.3 Recommendations & Future Work

The following are recommendations for capitalizing on the findings and results of the
CHECKMATE effort:

1. Transition CHECKMATE to TRL5 and Deploy CHECKMATE at Small Scale in an
Operational Environment
The initial research and demonstration of CHECKMATE has shown that the technology
has strong potential to mitigate real threats to cyber infrastructure. If this capability can
be transitioned to an operational environment, an asymmetric advantage could be given
to defending forces. A key step in this would be the formalization of the implementation
to determine its suitability to production systems. Deploying CHECKMATE in a limited
test deployment provides an opportunity to develop CHECKMATE deployment
methodologies as well as validate CHECKMATE protection under real-world attack
situations.

2. Extend CHECKMATE to Operate on Additional Platforms
Extension of CHECKMATE to other types of platforms such as single-purpose
embedded systems promises to provide protection beyond general purpose platforms.
Additionally deployment of CHECKMATE across an enterprise environment that

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

includes a mixture of general purpose platforms requires support of applications and
operating systems such as Microsoft Windows, Apple OS X, iOS, and Android.

3. Develop Advanced Techniques for Achieving Synthetic, At-Scale Diversity in Future
Systems
Further research to develop additional techniques for achieving diversity as well as
neutralizing additional attack classes such as attacks on interpreted code execution would
extend the operation envelope of the CHECKMATE technology. As shown in
CHECKMATE, multiple diversification techniques are needed to ensure robust
protection. A suite of diversity techniques that leverage emerging technologies will
ensure that diversification-based protection can be readily applied to future systems.

2 INTRODUCTION

Monoculture computing environments are susceptible to attack because of the commonality of
the hardware and software across a large number of processing systems. In a monoculture
environment a single vulnerability enables potential widespread harm and is attractive to
attackers due to the large return for minimal effort.

For example, desktop computing is dominated by x86 processors, while mobile computing is
dominated by ARM processors. Monocultures extend further than the processor architecture and
include operating systems, applications and software stacks. When an adversary plans an attack
on these systems, little reconnaissance is needed to craft a suitable attack payload that can assault
a large number of devices. When a new code injection vulnerability is discovered, it is generally
assumed that the corresponding exploit that is released will be written in x86 machine code.

Raytheon BBN Technologies has developed and demonstrated CHECKMATE, a suite of
protection mechanisms that use existing available computing resources to reduce the attack
surface available to exploit the vulnerabilities of a computing monoculture. CHECKMATE
protects systems by diversifying application execution in a manner not possible in existing
systems.

Diversity is an effective defense against existing code injection attacks which are, by their
nature, dependent on the homogeneous nature of computing environments. The reduced attack
surface also alters the adversaries’ cost-benefit ratio requiring the development of attacks that
can survive the shifting of architectures and which can operate in multiple architectures. This
alters the attack environment in a way that places the burden of addressing a geometrically
growing surface on the attacker rather than the defender. In enabling scale diversity,
CHECKMATE addresses a systemic security issue common to single-processor Von Neumann
computing systems and provides a framework for accurately quantifying the security benefits.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

To quantify the effectiveness of CHECKMATE protections, an analytical model was developed
and confirmed with empirical results. Quantification also provides an opportunity to compare
the effectiveness of CHECKMATE against existing technologies.

Research and development during the CHECKMATE effort focused on three major areas
outlined below. The results from each area combine to comprise the CHECKMATE protection
suite:

• Achieving diversity through remote application execution on heterogeneous hardware
• Increasing diversity using synthetic architectures
• Reducing the attack surface via architectural shifting

One approach to creating more diverse systems by using underutilized hardware is to enable
application execution across heterogeneous hardware. The initial set of hardware mixtures
explored included ARM, PowerPC, and x86. Specifically application segmentation and remote
execution of segments on different hardware architectures was investigated. Application
segmentation allows a standalone application to be broken up into several parts. The remote
execution interface allows each of these segments to be executed on remote processors
communicating with each other as if they were running on the same processor. A seamless
approach to heterogeneous application execution preserves the original functionality of the
application.

Synthetic architecture diversity provides a mechanism for scaling in situations where additional
physical architectures are not available or infeasible. Many unique processors are generated and
emulated in a single-processor system to approximate a large-scale heterogeneous system. To
execute applications in an architecturally diverse environment, the well-understood process of
instruction encoding is applied to portions of existing applications. Instruction encoding allows a
commodity processor to execute multiple architectures by transforming the native instruction of
the physical processor. Combined with heterogeneous application execution, synthetic diversity
proved to be a robust mechanism for achieving diversity on single architecture systems.

To further improve upon the benefits of diversification derived from heterogeneous execution
and synthetic diversity, additional research was directed towards reducing the attack surface.
One successful approach to attack surface reduction is called architectural shifting.
Architectural shifting is the computer architecture analog to frequency hopping in radio systems.
Instead of rapidly switching frequencies, architectural shifting seamlessly weaves many unique
but functionally equivalent application instruction streams together. Many architectures
combined with frequent shifts between architectures during execution, produces an exponential
quantity of attack paths that nearly eliminate any chance of a successful attack.

A typical CHECKMATE enabled prototype system configuration is shown in Figure 2.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

Figure 2. Typical CHECKMATE Prototype Configuration

The remainder of the document details design, development, implementation, and evaluation the
CHECKMATE protections. Section 3 describes the methods, assumptions, and procedures
employed throughout the CHECKMATE effort. Section 4 summarizes the results and findings
of the CHECKMATE effort. Section 5 contains concluding remarks and Section 6 contains
recommendations for future adaptations and extensions of the CHECKMATE protections.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Achieving Diversity through Heterogeneous, Remote Application Execution

One method to achieve diversity in a homogeneous system is to leverage underutilized hardware
that is already present in the system. Examples of underutilized hardware include extra memory,
extra compute cycles, unused cores, or other co-processors that are not used in the current system
setup. To facilitate execution across these extra resources, particularly extra processors,
applications must be split up to allow an application to run on multiple architectures at the same
time. To achieve seamless execution and preserve original, standalone application functionality
each segment must have a pathway for communication to other executing segments.

3.1.1 Application Segmentation
To increase the number of architectures that a single application can run on, a process of
decomposing applications into segments was investigated. Application segmentation allows
parts of a single application to run in multiple architectures at the same time, also allowing parts
of an application to change architecture over the lifetime of a running program.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

Figure 3 shows how application segmentation is setup on an emulated system. Each segment is
compiled in the various architectures that are supported, and packaged as a standalone
application. The combined operation of each segment forms the full functionality of the original
application. As such, each segment is dependent on the other running segments. These
application segments communicate with each using inter process communication (IPC) in the
places where the original program shared data directly via a shared address space.

Several techniques for performing application segmentation were explored during the
CHECKMATE effort. Automating segmentation along natural application boundaries such as
basic blocks, function calls, or thread instantiation proved to be largely intractable. The
difficulties in automating segmentation revolved around the need to understand from a security
standpoint, which segments were of interest to an attacker, particularly sensitive, and/or
vulnerable. Instead, manual approaches to segmentation were explored. The effort required to
manually segment an application is dependent on three dominant factors. These are:

• An application that already contains independent processes that communicate can easily
be converted, because each of the original processes can simply become a standalone
application. Figure 4 outlines the details of the conversion process.

Figure 3. Emulated Multi-Architecture System with Segmentation

Figure 4. Application Segmentation Process

x86 CPU

Linux

x86 Application
Segment PPC QEMU ARM QEMU

ARM Application
Segment

PPC Application
Segment

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

• Applications that have a single thread, and rely on shared access to a large amount of data
are the hardest to segment, due to the connected nature of the application. The
segmentation of applications like these relies heavily on IPC mechanisms such as shared
memory to allow each segment to access the data it needs.

• The choice of where and how often to segment is also a consideration. Finer grained
application segmentation reduces the likelihood of an attacker determining the target
architecture for the attack since portions of the application will be running in different
architectures at different times during execution.

Manual segmentation at the source code level, performed by a developer, programmer, or third
party produced insight regarding the potential impact of diversified execution. Namely, that
diversification can prevent attacks; however, the scale of the diversification is a key factor in
preventing attacks.

3.1.2 Segmentation Experimental Setup
To evaluate the effectiveness of segmentation for attack prevention, an experiment was
constructed that emulated typical attacks against a network-based application.

The test application, OpenSSH Server Daemon [1], spawns a new process each time a session is
created. It is possible for multiple sessions to exist at once, but all remain inside the same
application. Once the new session is started, each process is fairly standalone, and does not
require interaction with the main process, or the other sessions. Figure 5 illustrates the per-
session thread spawning process of OpenSSH.

Figure 5. Original OpenSSH Operation

To demonstrate the technique of application segmentation, OpenSSH was segmented at a session
boundary. Each time a new user logs in; a new OpenSSH segment is started as a new application
on a random architecture. Figure 6 shows how multiple sessions may be running at the same
time, each in their own architecture. If an attacker were to craft an attack payload for one
particular

SSH Connection
Request

OpenSSH

Main Process

Session 1

Session 2

Session 3

x86

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

segment, it would not be effective on the other architectures, and the attacker would not be able
to predict when a given architecture will run.

Figure 6. Segmented OpenSSH Operation

While segmentation was demonstrated using OpenSSH, the concept of segmentation is
applicable to nearly any application. Additional experiments were performed with Mongoose
[2], a lightweight web server. Mongoose was modified to start execution with a new architecture
for each new HTTP request. A similar approach is relevant to most server applications that
handle multiple disjoint requests; each request can be handled by a different architecture. To
demonstrate the applicability of segmentation to a non-networked application, gzip [3] a
compression utility, was also segmented such that each time a file is compressed the
compression calculations are performed on a different architecture. No graphical applications
were included in the experiments; however typical thread-base handling of graphics provides a
natural boundary for segmentation and diversification. One example would be to render each
window on a unique architecture.

3.1.3 CHECKMATE Emulation Testbed
One challenge when exploring heterogeneous architectures is the difficulty of co-existing and
interfacing multiple instruction set architectures. Several physical testbed alternatives were
evaluated for combining x86, PowerPC, and ARM processors into a single physical system.
Given that nearly all of the COTS platforms incorporating these processors were intended for
standalone use, integrating them into a single system where the individual processors could
interact proved both costly and time-consuming. Another approach, high-speed emulation
provided the ability to evaluate the effectiveness of CHECKMATE across, not only many
architectures, but also many instances of each architecture. High-speed emulation also provides
a mechanism for retrofitting architecture diversity onto systems that use single processors by
leveraging the extra compute cycles and system memory. The popular QEMU emulation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

platform was chosen as the CHECKMATE emulation platform for its speed, robustness, and
widespread use.

The QEMU emulator is able to solve both the problem of system availability and system
communication. The QEMU emulator is an open source processor emulator that is able to
emulate multiple architectures (including ARM and PPC) and is capable of running in multiple
modes of operation. First, it is able to create a traditional virtual machine, where all system
resources are emulated (disk, processor, RAM). Secondly, it is able to emulate a processor on a
per application basis, sharing the resources of the host system, and performing architecture
specific translation when necessary. The system resource sharing mode of QEMU was used to
create the first testbed, because it is able to satisfy both the application communication and
system availability problem. An additional benefit of the emulation-based test bed is the ability
to quickly scale the number of architectures in the system.

The initial emulated test bed is show in Figure 7, which consists of an x86 system containing an
ARM QEMU and PPC QEMU instance capable of running applications of their respective
architecture. With control centralized in the x86, a simple application launcher was created that
would randomly choose which architecture to run x86, ARM or PPC.

Figure 7. Emulated multi-architecture system

The first application tested was OpenSSH, an open source version of the SSH connectivity tools
including both a client and a server that provide user terminal access to the server upon client
authentication. OpenSSH represents a non-trivial, network-connected application that is
commonly attacked.

3.1.4 Remote Execution Interface
Initial tests using the emulated testbed indicated that sharing of local resources from the user
interface systems is key to enabling CHECKMATE in a transparent manner. QEMU provides a
resource sharing mechanism when all segments are running on a single processor; however a
similar functionality is required when using remote hardware [4]. In this case, remote hardware
refers to the processors that do not share a memory subsystem with the controller.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

A mechanism to support access to local resources from applications running on remote hardware
is required. Figure 8 illustrates operation of the remote interface. To facilitate remote operation,
an interface needs to be identified that allows interface calls to be intercepted and sent to the
interface system.

In the case of Linux, most interaction with the outside world goes through the kernel. Since the
applications that CHECKMATE will be protecting reside in user space, the system call interface
that separates user space and kernel space is an ideal candidate for an interception point. The
implemented remote system call interface is shown in Figure 9.

Figure 8. Heterogeneous Remote Hardware System

Figure 9. Remote System Call Interface Block Diagram

Application
Segment

Controller

Application
Segment

Application
Segment

Application
Segment

Remote Hardware

Remote Hardware

Remote Hardware

Network
Storage

User
Interface

Controller Resources

CPU

Kernel

Server

CPU

Kernel

Catcher Application

Launcher
Launches

syscall

Local syscall

pidRemote
syscall

Local syscall

Start

Remote System Call
Interface Components

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

The remote system call interface contains three major components:

• Server: runs on the interface machine, the point where the user or an external network is
connected to the system (the “Controller” from Figure 8). The server connects to remote
machines and accepts system calls as applications make them on remote hardware.
These system calls are then executed locally and the results are returned back to the
remote hardware.

• Catcher: a kernel module that runs on the remote machines, that is responsible for
catching system calls, and then communicating state information to the server (if
required). Once the system calls have been completed, the catcher collects the results
and returns them to the calling application.

• Launcher: launches the application that needs to use the remote system call interface,
informing the catcher which process ID to catch system calls for.

3.1.4.1 Identifying Interface Boundaries
All system calls cannot be blindly sent over the interface. The local kernel is still responsible for
the memory management of the running application, so the catcher needs to filter out the system
calls that need to be handled locally. However, system calls can be roughly sorted to different
classes (based on their arguments), so an interface generator was created that is capable of
automatically generating interface code for the most commonly used system calls.

There are over 300 system calls in the 3.x version of the Linux kernel. Not all system calls are
actively used in most applications. Analysis of system call usage across common applications
determined which system calls are necessary to support cross-architecture execution.

Figure 10 shows the common system calls for OpenSSH (calls made or referenced more than 5
times) when both static and dynamic analysis is performed. To support OpenSSH with the
remote system call interface the system calls in Figure 10 are required. Analyzing both the static
and dynamic call usage is important as either type of analysis alone incorrectly quantities overall
call usage throughout application execution lifetime. For example, only looking at the static
analysis would have given the impression that futex was more common than open, when in
fact open is called much more often.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

The combined static and dynamic analysis was performed on a set of common Linux binaries in
order to understand the usage of system calls across common applications. The analysis shows a
similar breakdown as for OpenSSH. Of the 66 total calls, 55 were called 100 times or less. The
breakdown of the remaining is shown in Figure 11.

Figure 10. Common Static and Dynamic System Calls

Figure 11. System Wide System Call Breakdown

0 20 40 60 80 100 120 140 160

brk

gettimeofday

uname

poll

vfork

exit

rt_sigreturn

sigreturn

connect

socket

_llseek

fcntl64

set_thread_area

rt_sigprocmask

futex

access

ioctl

mprotect

munmap

rt_sigaction

fstat64

write

select

stat64

mmap2

close

read

open

Static

Dynamic

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

While the analysis was performed for the Linux system call interface, the analysis process is
sufficiently general to apply to a range of common hardware abstraction layers (POSIX, etc.).
The idea is to identify all possible interface points and the likelihood of each in order to
determine which information needs to be transferred from the remote hardware to the server.

3.1.5 Segmentation Experiment and Results
To evaluate the effectiveness of segmentation-based diversity, attacks were performed against
the segmented and non-segmented versions of OpenSSH. To simplify the experimental process,
vulnerabilities were inserted into OpenSSH as discussed in Appendix A.1. Multiple versions of
the attacks against the inserted vulnerabilities were created.

Attacks against a segmented application succeeded when the instruction-set architecture used in
the attack matched the selected architecture for the OpenSSH session. Given the small count of
three architectures, the likelihood of a successful attack was approximately 33%. Failed attacks
are manifested as illegal instructions that are easily detectable. Segmentation demonstrates the
potential for diversity to prevent attack however segmentation with a small number of
architectures does not alone provide sufficient protection. To address the lack of architecture
diversity, additional methods for expanding diversity beyond the base architecture(s) found in a
system were explored.

3.2 Achieving Diversity via Synthetic Architectures

The results of the segmentation experiment indicate that diversity is effective for preventing
attack but that substantial architecture diversity is required for effective attack prevention. In
systems with a limited number of architectures, methods for artificially expanding architectural
diversity are necessary. One approach to establishing many unique architectures on a system is a
concept called synthetic architectures. By utilizing extra processing power and extra memory,
numerous synthetic architectures can be created and used to diversify execution. Synthetic
architectures can be created from scratch in either actual hardware or through emulation. These
architectures consist of new opcodes and instruction formats. The remote execution
infrastructure discussed previously provides a means for spreading execution across these
resources. Another, potentially more efficient approach, to creating synthetic architectures is a
technique called instruction encoding.

3.2.1 Instruction Encoding for Diversity
To supplement the physical and emulated architectures, the concept of instruction encoding was
developed. Unlike instruction set randomization [5] that attempts to encode instructions a priori
with one or more static keys, instruction encoding encodes instructions on the fly without prior
knowledge of a key to enable a commodity processor to execute many unique instruction sets.
As such it is possible to synthetically increase the number of architectures in a system for

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

purposes of diversification. Multiple encodings in a single system where one or more base
architectures coexist with multiple encoded architectures serves as the basis for synthetic
architectures. Synthetic architectures allow provide a mechanism for bypassing the limit of
physical architectures at minimal computational cost.

There are two parts to the instruction encoding process. First, the encoder takes a set of
instructions for a particular architecture and applies a reversible one-to-one function on that
instruction. The encoding function needs to be one-to-one because it needs to be possible to get
back to the original instruction using the correct decoding function. The encoding value
provides a means for differentiation during both the encoding and decoding process. The
instruction encoding process is illustrated in Figure 12.

The encoding process is similar to encryption, but it is important to differentiate it, because the
goals are quite different. In the case of encryption the goal is confidentiality, meaning that the
contents of the instruction and its purpose are being hidden. Also, instruction encoding bares
some semblance to instruction set randomization but with a key difference that the encoding
occurs on-the-fly at runtime and not with prior knowledge of a key value. The lack of one or
more static key values is a key enabler for diversity and avoids the need for processor support or
a key management scheme. With instruction encoding the goal is diversity, and there is no need
to keep the encoding value a secret (unlike an encryption key). In addition, the encoded and un-
encoded applications are likely to live in the same location. This is ill-advised if the goal was
confidentiality.

The instruction is decoded as it is fetched from memory and transferred to the processor.
CHECKMATE is concerned with defending code injection attacks that occur as the program
resides in memory. By decoding the instruction as late as possible, most code injection attacks
can be prevented. To simplify the experiment setup, it is assumed that the attacker is not aware
of CHECKMATE protections, and the injected attack instructions are not encoded. Note
however that CHECKMATE protections are not dependent upon limited attacker knowledge of
CHECKMATE’s techniques. Figure 13 shows the decoding process, where the decoding value

Figure 12. Instruction Encoding Process

ARM’ InstructionARM Instruction

Encoding
Value

One to One
Function

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

is the same value used from the encode process, and the decode function is the reverse of the
encode function. Decoding only occurs if an instruction fetch is being performed; all other
memory accesses remain unmodified.

3.2.2 Implementing Instruction Encoding
Two major challenges were discovered while implementing instruction encoding. First, on the
encoding side, all the instructions of an application need to identified and encoded, but the data
and other control information avoided. ARM was chosen as the base architecture due to its fixed
width instructions and wide availability of flexible development boards.

The second challenge of instruction encoding, is inserting the decode block in between the
instructions residing in memory and the processor. Usually the memory and processor (with
cache) would be directly connected with no opportunity for interception, but the choice of
emulation platforms allows an opportunity to get access to the processor-memory boundary.
Implementing instruction encoding in hardware requires a more creative approach, discussed in
section 3.2.2.4.

3.2.2.1 ARM Executable Encoder
The encoder takes as input, a standard ELF (Executable and Linkable Format) executable and an
encoding value. Using the ELF headers, it finds the ELF for its text section (executable
instructions), encodes each instruction with the encoding value, and outputs the encoded
executable. An exclusive-or (XOR) is the current encoding mechanism, as it is simple to
implement, and easily reversible by a decoder.

While ARM uses a relatively simple RISC instruction set, and commodity hardware is readily
available for it, ARM architectures have an interesting feature, not shared by x86 and PowerPC,
which required one additional step in the encoding process.

ARM makes use of "literal pools" within text sections of executables. Literal pools are generally
small areas of data within a larger stream of instructions. Compilers for true RISC processors
such as ARM, insert literal pools such that a single instruction can reference the data (using an

Figure 13. Instruction Decoding Process

ARM’ Instruction

Memory

Encoding/
Decoding

Value

One to One
Function

ARM Instruction

Processor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

immediate offset for example), instead of requiring two instructions. Literal pools present a
problem for encoding since only instructions and not data will be decoded. If left in an encoded
state, any literal pools will be improperly decoded and result in executable malfunctions.

To combat the literal pool problem, several identification methods were investigated. First, a
modification to the compiler tool-suite "binutils" was considered. Specifically, update the "gas"
(GNU Assembler) to emit modified instructions. The assembler approach is applicable to
approximately 95% of instructions; however some instructions do not exist until link time or are
not fully resolved. Branches outside of the local object file are one example of instructions that
are missed by the assembler approach to the literal pool problem. Modification of the linker (ld)
is another approach to obtaining the necessary information; however linker modification was
complex and forced modification of standard application development tools.

Next, the GNU objdump tool was examined as a potential source of information that could
mitigate the literal pool problem. Using objdump, it is possible to generate disassembled output
of the binary. From the disassembly it is possible to distinguish executable code from data,
including data embedded in the executable text segments. The objdump tool provided reliable
results for the majority of instructions; however, not all instructions are properly identified and
100% identification is required for a program to work correctly.

The relocation header of the ELF executable as also investigated. Using gcc --emit-relocs, the
compiler adds a special section in the final executable known as relocations. By scanning
relocation headers, it is possible to identify some of the data in the text section. In this technique,
many elements are missed, which also makes this approach infeasible.

Finally, using the symbol table section of the ELF executable was attempted. This technique
was ultimately chosen since most assembler/compilers emits a special symbol ($d) every time it
inserts a literal pool (data in the text section) into the image. Additionally, another symbol ($a)
is added once the instruction stream resumes. A representation of literal pools and their
relationship to their symbol table is shown in Figure 14. By using symbol tables, we can identify
all of the data in the instruction stream. A minor challenge is that the size of the literal pool is not
added as part of the symbol, so it is required to scan forward in the executable until the next
instruction symbol ($a).

Figure 14. Identifying Literal Pools with Symbol Table

Data
Data

Instruction
Instruction

Instruction

Data

Literal Pool
Literal Pool

Instruction

Instruction
Instruction

ARM ELF

$a
$a

$a

Data Section

$d
$d

$a

$a
$a

Symbol Table
Instruction
Section

Instruction
Section

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

3.2.2.2 Instruction Encoding/Decoding with Emulation
The QEMU emulator used during initial experimentation provides full access to all the emulated
hardware components through modification of the QEMU source code. The original QEMU
instruction execution process flow is show in Figure 15.

The emulated architecture instruction is fetched from memory, translated into an instruction (or
set of instructions) for the host architecture, and then executed. By injecting a decode step into
the instruction pipeline, instruction decoding can be performed in QEMU.

Figure 16 shows the modified instruction fetch process. The instruction decode is added after the
fetch, and a new instruction state is added. Also demonstrated in Figure 16 is that the time that
instructions exist in the “Emulated Architecture” state is kept to a minimum, as this period
provides an opportunity to perform a code injection attack.

3.2.2.3 Emulated Instruction Encoding Experimental Setup
Instruction encoding was added to the emulation testbed outlined in Section 3.1.3 allowing for an
increased number of emulated architectures in a single system. The only limit to the number of
architectures is the memory required to store the multiple copies of the encoded architectures,
and the computation time it takes to generate the encoded applications. A maximum of 50
emulated synthetic architectures were used in the experiment.

Synthetic architectures are compatible with any host architecture supported by QEMU. During
the experimentation the synthetic architectures were executed on both x86 host and ARM hosts.

3.2.2.4 Hardware Instruction Encoding
The emulator solution is flexible and easy to implement on multiple platforms, but has the
drawback of running inside an emulator that significantly reduces application speed, as
compared to native execution. Hardware encoding is able to achieve these native speeds, but
requires additional hardware to do so. The normal instruction execution process when excluding
cache interaction is shown in Figure 17.

Figure 15. Original QEMU Instruction Execution Process

Figure 16. Modified QEMU Instruction Execution Process

Instruction Fetch Instruction
Translate

Instruction
Execute

Emulated Architecture Host Architecture

Instruction Fetch Instruction
Translate

Instruction
Execute

Encoded Emulated Architecture Emulated Architecture

Instruction
Decode

Host Architecture

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

To implement instruction encoding, a method of intercepting the processor accesses to memory
is required. While the processor’s connection to memory is direct, it is also a bus, meaning that
the processor is able to access other devices on the same bus. Bus-based memory access
provides a means to implement an in-line decoder by adding a new device to the memory bus
and rerouting processor memory accesses through the new device. In the CHECKMATE
implementation the rerouting of memory access through the added memory decoder is achieved
by remapping requests to a new address range.

The process of fetching an instruction through the decoder is illustrated in Figure 18. It should
be noted that without extra processing, all accesses through the decoder will be decoded. Since
data is not encoded, the decoder will need to be aware if a data or instruction access is occurring.
To route processor accesses to the correct address, the MMU can be modified to access memory
through the correct range. MMU redirection is implemented as a mask, so for example if the real
memory base was 0x00000000 – 0x40000000, the same memory could be accessed through
the decoder at address range 0x80000000 – 0xC0000000, meaning there is a fixed offset of
0x80000000. Knowledge of the precise address scheme would not benefit the attacker
because from the point of view of user space (the attackers perspective), the virtual address that
is being accessed does not change, so there is no security benefit to a more complex addressing
scheme.

3.2.2.5 Hardware Instruction Encoding Experimental Setup
Required for hardware decoding is a device that externally exposes the memory bus, as well as
another processing element (processor or FPGA) that can act as the decoder. The Xilinx Zynq-
7000 embedded on a Digilent ZedBoard was used for our experimental setup.

Figure 17. Original Hardware Instruction Execution Process

Figure 18. Modified Hardware Instruction Execution Process

Instruction Fetch Instruction
Execute

Direct Hardware Connection

Instruction Fetch Instruction
Execute

Direct Hardware Connection

Instruction
Decoder

Original Address Range

Decoder Address Range

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

The Zynq provides dual core Cortex-A9 (same cores that are in the Tegra 3 and OMAP4400
series SoCs). Memory accesses are performed of the AMBA busses, but unique to the Zynq, the
AMBA switches connect both to the memory controller and the programmable logic. AMBA
access allows the processor to access the same memory region directly, or through the decoder,
depending on the needs of the application that is currently running. Figure 19 shows the high
level block diagram of the Zynq processing system. Of particular interest are the connection
points between the programmable logic and the processing core.

Figure 20 shows the different pathways that the memory accesses follow. When the processor
accesses memory directly (via address range 0x00000000 – 0x40000000) the access is
routed through port M0, following the red path to the memory controller. The decoder is
designed with a configurable address range, and when memory is accessed via the specified
address range (0x80000000 – 0xC0000000), access is routed through port M1 following the
green path. The resulting signal is routed through the master interconnect, and then up to the
programmable logic, where the decoder resides. Once the memory access is received, the
address is modified to its memory counterpart (fixed offset of 0x80000000 is subtracted). The
request is then sent down through the AXI HP to DDR interconnect and finally to the memory
controller. The data accessed travels back to the decoder (in its encoded state, if it is an

Figure 19. Xilinx Zynq-7000 Block Diagram

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

instruction). Once the data is at the decoder, it determines if the information being is accessed is
an instruction. The AXI interconnect specification includes the AR_PROT signal which
includes a bit that is set if the access is an instruction. Based on the AR_PROT signal, data
access is ignored by the decoder and instructions are decoded for execution on the controller.

Figure 20. Zynq Memory Access Pathways

The hardware-based CHECKMATE testbed and typical experimental setup are shown in Figure
21 and Figure 22.

Decoder

Decoder memory access path
Direct memory access path

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

Figure 21: Hardware-based CHECKMATE Prototype

Figure 22: Typical CHECKMATE Experimental Setup

3.2.3 Synthetic Architecture Experimental Results
The OpenSSH test attacks used in the segmentation experiments were also used to evaluate the
effectiveness of diversity through synthetic architectures. With the additional architectures

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

provided by instruction encoding, the OpenSSH test exploit from section A.1 was re-run. Tests
were run with a range of virtual architectures, from 2 to 47 to demonstrate how the security
benefits of additional architectures scale with added architectures. For each set of architectures,
the exploit was run until a successful breach 100 times, and the average number attempts to
breach were recorded. The result is a relative measure of security for the system. Experimental
results for the all of the runs are shown in Figure 23.

The average number of attempts to successful breach is equal to the number of architectures. As
such, the likelihood of successful attack is the inversely proportional to the number of
architectures. Mathematically the inverse relationship corresponds to a geometric distribution as
each one of the attack attempts can be viewed as Bernoulli trial.

Given that 𝑥 is the attempt the attack will be successful and 𝑝 is the probability of success (fixed
for a given set of architectures):

𝑥 = 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝) (1)

As 𝑥 is geometric, the probability that the 𝑘𝑡ℎ trial is successful is given as:

𝑃(𝑥 = 𝑘) = (1 − 𝑝)𝑘−1 × 𝑝 (2)

In addition, the expected value of a geometric distribution is given as:

Figure 23. Instruction Encoding Average Attempts to Breach

0

10

20

30

40

50

60

2 7 12 17 22 27 32 37 42 47

N
um

be
r

of
 A

tte
m

pt
s

U
nt

il
Fi

rs
t S

uc
ce

ss
fu

l A
tta

ck

Number of Unique Architectures

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

𝐸(𝑥) =
1
𝑝

 (3)

However 𝑝 is known, so the equation reduces to:

𝐸(𝑥) =
1

𝑜𝑓 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠−1
= # 𝑜𝑓 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠 (4)

Therefore, the experimental results from Figure 23 agree with the statistical equations (2) and
(4). However, these numbers assume that no action is taken by the system operator when these
attacks fail. As discussed in section A.2.1, when the attacks fail, there is a noticeable invalid
instruction displayed to the operator. Given the severity of instruction-level errors it is likely that
an operator (or similar security monitoring software/hardware) would recognize the incoming
attacks and respond. By incorporating the “watchdog” the odds of the system being able to stop
the attack are increased. Assume that after 𝑁 unsuccessful attacks the system is locked down
and access is no longer possible:

𝑃(𝐴𝑡𝑡𝑎𝑐𝑘 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑) = 1 −�𝑃(𝑥 = 𝑖)
𝑁

0

 (5)

Equation (5) is using the geometric probably for each trial from (2). The watchdog approach
was implemented in the experimental system for a number of 2 up to 47 architectures, with 25
runs experimental runs per data point.

Figure 24 shows the experimental results from the watchdog runs. Once the number of
architectures reaches 30, the odds for successfully stopping an attack reach 80% and additional
architectures only marginally increase that percentage. After this point, the added cost (in space
and processing time) is likely not worth the return.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

The statistical analysis assumes a worst-case scenario; the attacker is aware of the set of
architectures that could possibly be run, and that attack payload that will be used only needs to
run in a single architecture. If, for example, the architecture that was currently being executed
switched during attack payload execution, the attacker would need to be aware of the change and
construct the payload accordingly, making payload construction increasingly difficult.

Synthetic architectures provide another means for increasing diversity in execution. While
synthetic architectures can provide reliable protection especially if a watchdog is available, they
provide diminish returns as the number of available architecture increases. Similar to
segmentation, the eventual selection of a single architecture ultimately limits the protection. To
combat the limitations of single-architecture selection, another approach called architectural
shifting was developed.

3.3 Reducing the Attack Surface via Architectural Shifting

A key finding from the investigation of application segmentation and synthetic architectures is
that while increasing the number of architectures in a system does improve security, the
effectiveness is limited because the attacker must only correctly guess a single architecture.
Given the difficulty of including large number of architectures even if they are synthetic,
executing on a single architecture ultimately limits protection even if there are many choices at
runtime.

The key to preventing attack is incorporating many architectures during execution.
Segmentation provides one approach for incorporating multiple architectures into application
execution but is difficult to automate and is limited in granularity of the segmentation. Instead,

 Figure 24. Probability of Preventing Attack with Watchdog

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 7 12 17 22 27 32 37 42 47

P
ro

ba
bi

li
ty

 o
f S

to
pp

in
g

A
tt

ac
ke

r

Number of Unique Architectures

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

an approach called architectural shifting was developed that uses many architectures to execute
an application. Architectural shifting is the computer architecture analogue to frequency
hopping in radio systems where every instruction can be executed on one of many architectures.
Many, shifting architectures ultimately force an attacker to craft a multi-architecture payload as
well as appropriately guessing the proper sequence of architectures being employed. Not only is
an adversaries attack effort increased but also the probability of successfully crafting a payload
that operates in a shifting environment is near zero for even a small number of architectures and
a small payload size.

From section 3.2.3 we know that the probability of an attacker successfully guessing the correct
architecture (with a single architecture payload) is simply the inverse of the number of
architectures. When multiple architectures are required for the payload, the probability of
successful breach can be expressed as:

𝑝 =
1
𝑎𝑟

 (6)

Where 𝑎 is the number of possible architectures, and 𝑟 is the number of architectures required in
the payload. The statistical analysis again assuming that the attack knows the set of possible
architectures (the worst case scenario). Figure 25 shows the exponentially decreasing probability
of attacker success as the number of architectures required in the payload increase. In the
example shown, only 5 possible architectures are available (architectures can repeat, which
allows the number required to be higher than the number of possible).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

Comparing the results of architectural shifting to the results from section 3.2.3, it is clear the
security benefit that shrinking the attack space provides. Even with the smallest number of
possible architectures (2), after only 5 architecture shifts, the odds of stopping the attacker are
over 95%.

By increasing the number of architectures required in the payload, the faster the probability of
stopping an attacker grows.

3.3.1 Implementation of Architectural Shifting
Architectural shifting leverages the advantages of instruction encoding to create a framework
that is able to rapidly and randomly switch between different encoded architectures. Each set of
uniquely encoded application instruction streams has the same base architecture, such that once
they are decoded, each application instruction stream is identical. Therefore the processor can
fetch instructions from any of the encoded applications, and provided it has the correct decode
value, can decode and execute them. Instruction multiplexing can also be thought of as
application segmentation at an instruction level.

Figure 26 shows the block diagram for instruction multiplexing. Stored with each set of
instructions is its corresponding decoding value. The decoder/multiplexor selects one instruction
stream, loads the decode value, and proceeds to fetch and decode. The multiplexor can switch

Figure 25. Probability of Stopping Attacker with Increasing Number of Architecture Shifts

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

from stream to stream at any time interval (the smallest possible being switching after every
instruction.) The tradeoff here is speed vs. security, since there is a setup time associated with
each multiplexing transition. The example is shown with three sets of instructions, but
functionally equivalent for any number of synthetic instruction sets.

The odds of attacker success against instruction multiplexing can be expressed as a function of
the size of the attack payload in instructions (𝑦), the number of instructions executed between
multiplexer shifts (𝑚) and the number of possible architectures (𝑎):

𝑝 =
1

𝑎
𝑦
𝑚

 (7)

Comparing (7) to (6), it is clear that the number of architectures required in the attack payload is
equal to attack size divided by the multiplexer switching frequency (𝑟 = 𝑦

𝑚
). It should be noted

that 𝑚 is an approximate frequency since one instruction can vary in time required to execute.
The attacker, whose goal is to keep 𝑟 small, will try to keep 𝑦 small. From the defenders
perspective, it is best to have 𝑟 as large as possible, and the defender will attempt to keep 𝑚
small (1 is the smallest possible).

These variables allow a custom level of security to be set for specific situations. A system
operator has control over both the number of possible architectures and the multiplexer shift
frequency. Increasing the number of possible architectures, increases security, at a cost of

Figure 26. Instruction Multiplexing Block Diagram

ARM′ Instruction

ARM″ Instruction ARM Instruction

Processor
Decoder &
Multiplexer

ARM″ Decode Value

ARM′ Decode Value

ARM‴ Instruction

ARM‴ Decode Value

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

memory. Increasing the multiplexer shift frequency will also increase security, but at the cost of
processing cycles. Figure 27 shows the increased probability of stopping the attacker with both
an increased frequency of multiplexer shift and number of possible architectures.

Figure 27. Probability of Stopping Attacker with Increasing Frequency of Multiplexer Shift

3.3.2 Instruction Multiplexing with QEMU
Similar to instruction encoding, instruction multiplexing exhibits similar implementation
challenges as discussed in section 3.2.2. Namely, the decoder/multiplexor needs to be placed in
the instruction fetch path between the processor and memory. Instruction multiplexing was
implemented in the QEMU emulators, expanding on what was already done for instruction
encoding.

When an application is started with instruction multiplexing in QEMU, multiple instruction
sections are allocated in memory. The application is then encoded multiple times (using the
same process detailed in section 3.2.2) and stored in the newly allocated memory. The
instruction fetch process now chooses a random instruction stream as well as decoding the
instruction. Since all the locations of the instruction streams are known by QEMU, when it is
time to choose a new architecture, it is a simple matter of updating the MMU to point the virtual
address to a new set of instructions.

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9

Pr
ob

ab
ili

ty
 o

f S
to

pp
in

g
A

tta
ck

er

Number of Instructions Bewteen Shift

2 4

8 16

Number of
possible

architectures

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

3.3.3 Combined Results of Synthetic Architectures and Architectural Shifting
The final CHECKMATE protection capability consists primarily of the combination of many
synthetic architectures and rapid, realtime architectural shifting. To validate the statistical
analysis above, the attack scenarios and OpenSSH application described in previous sections
were used to demonstrate the effectiveness of the finalized CHECKMATE solution. An
experiment was setup where an eight instruction payload was used to attack a vulnerable
OpenSSH application on a CHECKMATE protected platform with only two architectures. The
aforementioned configuration represents a worst case scenario where the minimal protection is
used and the smallest possible payload is required and thus represents a strong test case for
evaluating CHECKMATE’s effectiveness.

The screenshot in Figure 28 shows the experiment running in realtime. Note that the number of
successful instructions (not complete attack) is very small even over millions of attempts even
for the worst case configuration of a CHECKMATE protected system and attack. Experiment
results support the previously discussed statistical model derived from the architectural changes
imposed by CHECKMATE.

Figure 28: Realtime CHECKMATE Experimental Results

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

4 RESULTS AND DISCUSSION

4.1 Key Finding 1: Exponential Increase in Protection due to Diversity

Combining multiple architectures with realtime architectural shifting yields a drastic increase in
protection by creating extreme diversity in application execution. The ability to achieve
effective protection through diversity finding represents the core of the CHECKMATE
protection capability. In some cases, application segmentation can be used to execute portions of
application across heterogeneous, remote hardware assets to further diversify portions of
applications. The CHECKMATE approach successfully leverages extra hardware to provide its
protection including not only multiple, heterogeneous processors but also underutilized
processors and unused memory. CHECKMATE is implementable as both a software or
hardware solution and is applicable to any application with available source code. The
CHECKMATE hardware solution provides additional robustness from attack, reduced
performance impact, and the potential for applying CHECKMATE protection to entire operating
system environment as well as standalone, bare-metal embedded systems.

4.2 Key Finding 2: Attack Detection and Alerting

An additional benefit of the CHECKMATE approach beyond protection from attack is that is
illuminates the attack attempts by forcing attack attempts to manifest themselves as
illegal/invalid instructions. Independent of the diversification technique employed; an attack
being attempted in the incorrect architecture will produce an illegal instruction error. These
methods can be instruction encoding, remote execution or time multiplexing. Attack attempts are
easily detected by an operator or other automated means enabling realtime response and
countermeasures deployment. This approach to attack detection is especially powerful because it
occurs in response to an immutable property of the physical processors and cannot be disabled.

4.3 Key Finding 3: Attack Types Prevented

Table 2 provides a brief summary of CHECKMATE protection against major attack classes. In
summary, CHECKMATE completely neutralizes an entire class of attacks, machine code
injection attacks, that are commonly employed in attacking a wide range of computing systems.
Attackers leverage vulnerabilities and flaws in applications combined with the knowledge of the
underlying system hardware to craft and execute attacks. CHECKMATE neutralizes machine
code injection attacks by removing a fundamental mechanism available to the attacker.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

Table 2. CHECKMATE Protection Summary

Attack Type Protection
Machine Code Injection CHECKMATE able to protect against
Return Oriented Programming CHECKMATE offers limited protection
Interpreted Code Injection/SQL Injection CHECKMATE cannot protect against

When segmentation and remote execution are employed, CHECKMATE can provide limited
protection against return oriented programming attacks (ROP).

Segmentation provides limited protection, simply because the attacker’s selection of ROP
gadgets is reduced, and it is not possible to reach across application boundaries to get other
gadgets. Architectural shifting has little impact against ROP attacks since the ROP gadgets will
be fetching and executing instructions in the same manner as a regular application

CHECKMATE does not provide protection against interpreted code injection attacks. Interpreted
environments or virtual machines act as a barrier between the application and the native
architecture. Interpreted environments have benefits in certain situations, because the same
executable can run on multiple architectures. Similarly, attacks against interpreted environments
are widely applicable across multiple architectures. Figure 29 shows an example an attack
against an interpreted environment with a Java executable. CHECKMATE can also not protect
against SQL injection attacks for the same reason; SQL commands are the same regardless of the
architecture they run on.

4.3.1 User Experience and Performance
CHECKMATE is designed to work seamlessly within an existing system. For most instances,
users operate their system without knowledge that CHECKMATE is even present. For example,

Figure 29. Interpreted Code Injection Attack on Multiple Architectures

ARM PPCx86

Java VM Java VMJava VM

Java Executable

Attack

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

a user executes “/usr/bin/wget”. Behind the scenes, the CHECKMATE system automatically
applies protection by running in different architectures.

Given that most applications executed in a general purpose, user-interactive computing
environment are not compute bound, a user generally experiences little or no discernible
application slowdown. The primary source of delay in user interactive applications is system
I/O. In the case of emulation, the cost of emulating many architectures far outweighs the cost of
the CHECKMATE protections in both resources consumption and compute performance. Any
performance lost can be recovered by the reduction in complexity of anti-malware software
permitted by the reduction in the attack surface afforded by CHECKMATE.

One aspect a user may notice is increased memory usage. For the instruction multiplexing
approach, CHECKMATE can be configured for a number of simultaneous synthetic
architectures. The memory increase is equal to the product of the number of additional
architectures and the amount of executable code in the program. Given the amount of memory
found in commodity systems, the fact that much of memory is usually data and not instructions,
and that only a few architectures are required to provide incredibly improved security, it is
expected additional memory use is not a major limitation.

Another aspect a user may notice is the speed of executing the program. Because
CHECKMATE emulates different processor architectures, some performance is lost during the
translation to the host processor architecture. Due to the use of widespread emulation, some
applications may experience up to 500% compute slow down depending on several factors.
However, in most applications, slowdown is imperceptible to user and negligible to the
application as actual computation represents a small portion of overall execution time. For users
who desire the highest performance, CHECKMATE is also implementable in a hardware-based
solution (see section 3.2.2.4).

5 CONCLUSIONS

CHEKMATE has been demonstrated to be an effective, low cost and reliable mechanism to
greatly reduce the available cyber attack surface. These results are shown in laboratory
experiments. If these results continue to be seen in a TRL 5 environment, CHECKMATE can
contribute to a substantial reduction on the attack surface presented by modern DoD systems.

In an effort to combat widespread attacks against monoculture computing environments,
Raytheon BBN Technologies (BBN) developed and demonstrated CHECKMATE (Hardware-
assisted Platform Diversification for Secure Polymorphic Computing), as a novel set of
protections to add diversity and break the monoculture. CHECKMATE neutralizes and entire
class of attack that is commonly used to attack real world systems. The use of many

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

architectures combined with architectural switching represents a fundamental advancement in
computer architecture design for security.

BBN has shown that in addition to stopping code injections attacks, increased diversity has the
benefit of notifying the system operator when an attack occurs, due to the nature of an instruction
architecture mismatch. Attack detection allows for the deployment of countermeasures or
corrective actions.

6 RECOMMENDATIONS

6.1 Transition CHECKMATE to TRL5 and Deploy CHECKMATE at Small Scale in an
Operational Environment

Having demonstrated the benefits of techniques in a laboratory environment, evaluation of
CHECKMATE in a representative operational environment would provide a larger scale,
experimental basis for quantifying CHECKMATE’s impact on system protection. Additionally,
exposing CHECKMATE to actual attacks or potentially a red team scenario provides additional
means for evaluating the robustness of the CHECKMATE approach.

6.1.1 Example CHECKMATE Enterprise Deployment Scenario
CHECKMATE provides a new set of techniques for protection against threats in a monoculture-
computing environment that have been demonstrated in a proof-of-concept environment. While
adequate, several areas of improvement can be made to take CHECKMATE beyond the proof-
of-concept.

The following sections details both the administrative and technical steps required to roll out
CHECKMATE in an enterprise environment. A sample roll out is provided as a baseline for
discussion. We discuss exploit scenarios, and demonstrate CHECKMATE protections against
them. We also discuss the user experience performance, as well as the ability for CHECKMATE
to act as an administrative alerting system. Finally, we discuss additional research topics that
can further improve protection capability.

6.1.2 Sample Roll Out
The following details an example roll out into an enterprise system with 5 servers and many
clients as shown in Figure 30. CHECKMATE protects the primary service running on each
server. On the clients, a standard set of applications (e.g. “/usr/bin”) is protected with
CHECKMATE.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

Server 1 - Administration
Server 2 – Database (mySQL)
Server 3 – Web server (Mongoose)
Server 4 – File server (SSH)
Server 5 – Email server

Each service in the example network is exposed to the Internet. Since CHECKMATE protection
works at the lowest level of instruction execution, it automatically provides both internal and
external threat protection for these services. So even if a client on the inside of a network is
compromised, CHECKMATE-enabled clients and server are still protected.

6.1.3 Active Exploit Scenarios
To further illustrate CHECKMATE protections, example attacks against the enterprise
configuration described in the previous section are detailed. Table 3 depicts typical attack
scenarios in an enterprise environment. CHECKMATE’s ability to defend against typical
enterprise attack scenarios is shown in Figure 31.

Server 4
File Server

Server 2
Database

Server 3
Web Server

Server 5
Email Server

Server 1
Administration

CHECKMAT E
Protected Servers

Client

Client Client

ClientClient

CHECKMATE Protected Clients

Figure 30. CHECKMATE Enterprise Deployment

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

Table 3. Active Exploit Scenarios

Attack Scenario Description
1. Malicious external client attacking

public facing services
Perhaps the most probable scenario where an
attacker external to the network is attacking a
publicly facing service. For our example, this
attack is likely against the web server.

2. Malicious external web server attacking
a client

The clients inside the network have access to
the Internet. If one of those clients visit an
external malicious server, it is possible that
they could become compromised.

3. Malicious internal client attacking
internal services

It is also conceivable that an insider threat
exists within the sample network. In this
scenario, the insider threat seeks to attack the
internal network services such as database and
file servers.

The first scenario is perhaps the most likely of all of the three attack scenarios. An external
malicious threat attempts to attack the external facing web server in the sample network.
Hypothetically, the attacker is aware of a specific vulnerability within the web server, and has
crafted an exploit against it. In our example, the web server is protected with CHECKMATE,
and is able to defend against code injection attacks. When the attacker launches their attack, it is
thwarted by CHECKMATE, and potentially, administrative notifications are generated (see
section 6.1.4).

Similar to the first scenario the second scenario also includes and external attacker, however the
internal client is threatened. The internal client is running a web browser vulnerable to several
different code injection attacks. When the user of the internal client visits a malicious website,
an attack is launched against their vulnerable web browser. With the CHECKMATE protection,
again the attack is thwarted, and notifications are generated.

Figure 31. Active Exploit Scenarios

CHECKMATE
Enabled Server

CHECKMATE
Enabled Client

CHECKMATE
Enabled Client

Malicious Client

Internal Network

Malicious Client Malicious Server

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
37

In the final scenario example, we revisit the first scenario, but now we have an internal threat
against the services running within our sample network. The threat is generated from an internal
source. Note that even though that attack is from a CHECKMATE-enabled client,
CHECKMATE is not providing any type of protection at the source of the attack. However, the
attack and protection provided is identical to the first attack scenario. Because the web server is
CHECKMATE enabled, the attack is thwarted and administrative notifications are generated.

6.1.4 Alerting and Protection System
In addition to a proactive defense, CHECKMATE has the ability to provide an early warning
system. During an active attack, an adversary attempts to exploit a specific vulnerability and
inject malicious code. CHECKMATE provides a line of defense and is likely thwart injection
attacks. Specifically, it is expected that the CHECKMATE system throws an exception rather
than executing malicious code. An attack detection capability provides an opportunity to report
the event to a system administrator, as well as gather statistics for later analysis. A previous
section referred a monitoring technique as a “watchdog”.

Deployment of a watchdog feature that would need to be further researched and developed. For
the QEMU-emulated CHECKMATE environment, one possibility is to modify the emulation
system to catch these processor exceptions and send to a notification system. The notification
system could be programmed to allow for some number of exceptions at a certain rate. Once a
threshold is exceeded, an alert could be sent to an administrator via an email or SNMP trap.

6.1.5 Autonomous Protection
Extending the capability to alerting an administrator, it is envisioned that CHECKMATE could
be further enhanced to automatically, temporarily, shutdown parts of a system during an attack
automatically, or with administrator assistance. For example, consider the web server in our
sample network. If an attack threshold exceeds say, 10 per minute, CHECKMATE could shut
down the web server for 10 minutes and sends an administrative alert. If after 10 minutes, the
service is restored and attacks continue, CHECKMATE could permanently bring down the
service.

6.2 Extend CHECKMATE to Operate on Additional Platforms

The CHECKMATE research and implementation is largely based on Linux systems due to the
openness and flexibility afforded during the research process. Fundamentally, the
CHECKMATE concept is applicable to a broad range of systems with proper extension. For
example CHECKMATE could be extended to protect embedded systems such as routers or
radios or other commodity general-purpose computers systems and applications such as systems
using Microsoft Windows, and Mac OS. Any system that has the ability to sufficient resources

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
38

to emulate additional process architectures (e.g. QEMU), and executables can be recompiled
cross-architecture, are candidates for the CHECKMATE technology.

6.3 Develop Advanced Techniques for Achieving Synthetic, At-Scale Diversity in Future
Systems

Given the effectiveness of diversity for preventing an entire class of attacks, techniques for
designing or incorporating diversity into next-generation systems should be explored. For
example, randomization of platform design at both the software and hardware levels may provide
additional protection. Also, developing additional techniques that provide systematic uniqueness
at the hardware level both in construction and operation could provide a means for robust
protection of future systems through diversity.

6.4 Additional CHECKMATE Implementation Extensions and Enhancements

Table 4 describes additional areas of research that could be performed to extend or enhance
CHECKMATE performance.

Table 4. Additional CHECKMATE Research

Research Area Description
ELF Loader To perform load-time encoding (eliminating

any pre-encoding requirements)
Automated Segmentation techniques Methods to automatically, or semi-

automatically segment a program along smaller
boundaries. Research to date has included
process boundaries, but preliminary research
suggests this could also be done along
functional boundaries.

Investigate GPU offloading GPUs are essentially commodity processors
with unique instruction sets. Research into
utilizing this additional resource as well as
extending the emulation diversity could result
in further diversification enhancements.

Dynamic Link Library improvements Research to improve handling of dynamic link
libraries, since the runtime memory is shared
amongst many processes, need to decode
consistently.

Add full THUMB instruction support And full ARM instruction set
Enhanced Demonstrations CHECKMATE-Enabled web-browser

CHECKMATE-Enabled PDF viewer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
39

Enhanced Demonstrations Perform exploit against known vulnerable
code, with and without CHECKMATE
protection enabled, and examine performance
(security + speed)

CHECKMATE-aware MMU and
enhanced decoder

Fast, software-less decoding which utilized the
processors hardware MMU to switch between
multiple versions of the instruction stream at
regular intervals

Additional OS Support To support Windows specific features and
APIs/libraries

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
40

7 REFERENCES

[1] “OpenSSH,” [Online]. Available: http://www.openssh.com/.

[2] S. Lyubka, “Mongoose - easy to use web server,” [Online]. Available:
http://code.google.com/p/mongoose/.

[3] J.-l. Gailly and M. Adler, “gzip,” [Online]. Available: http://www.gzip.org/.

[4] J. Smith and J. Ioannidis, Implementing remote fork() with checkpoint/restart, Columbia
University.

[5] G. Portokalidis, “MINESTRONE: Identifying and containing software vulnerabilities,”
[Online]. Available: http://nsl.cs.columbia.edu/projects/minestrone/?p=0.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
41

APPENDIX

A.1 Initial Experimentation

For the initial goal of the CHECKMATE program; researching the security benefits and
feasibility of using existing but underutilized hardware in a system, the target architectures of
ARM, PowerPC (PPC), and Intel x86 were chosen. These processor architectures are fairly
common in modern embedded systems, and have well established compiler support within a
Linux environment.

The first technique evaluated consisted of choosing one of the three architectures when an
application needed to run. It is assumed that the application that was going to be run had already
been compiled for each of these architectures, and the executable already resided on those
systems.

The hypothetical system consists of the components shown in Figure 32. The x86 systems is the
interface to the user, and the remote ARM and PPC systems are connected to the x86 system via
a network connection. The constructed setup was chosen both for its simplicity, and its
similarity to existing systems that would benefit from CHECKMATE protection.

While simple, the physical design posed new challenges. First, these processing systems need a
way to communicate with each other. If a user started an application on one of the remote
architectures, that application would require some of the local resources of the x86 architecture
system (files, network interfaces, I/O). Secondly, the solution cannot be tied to a specific set of
architectures. It is important to make the CHECKMATE solution scalable to many types of
systems, since no two systems will be identical. Emulators allow multiple types of guest systems

Figure 32: Simple Multi-Architecture System

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
42

be run on different host systems, so different emulator options were evaluated to overcome the
challenge of system availability.

A.1 Synthetic Attack Development

The attack used to test the segmentation technique was created specifically for the synthetic
vulnerability that was added to OpenSSH. By adding our own exploit to the test program, we
were able to ensure that the worst case scenario was under test. This attack allows an arbitrarily
sized attack payload to be sent over in the password field of the authentication data when a
session is created. An improperly sized buffer on the server side of the application allows the
payload in the password field to be executed, resulting in the user being authenticated with root
privileges. .

Figure 33 shows SSH authentication under normal conditions. Figure 34 shows SSH
authentication under attack from the test payload. The test payload rides in the password fields,
and when executed replaces the username with root.

Figure 33. Normal SSH Authentication

Figure 34. SSH Authentication Under Attack

OpenSSH Client OpenSSH Server

Authentication Data

Username

Password

Username

Password

OpenSSH Client OpenSSH Server

Authentication Data

Username

Password

Root

Password
Attack

Payload

Attack
Payload

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
43

A.2 Initial Findings

When attacking the test exploit in the initial test bed, several key findings became apparent:

A.2.1 Attack Indicator

When the architecture of the attack does not match the architecture of the running application, a
very visible error occurs. This manifests itself as an illegal instruction, which can be observed
by the system admin as an indication that an attack is occurring. The attack indication is a
powerful, but previously unrecognized benefit of heterogeneous systems. While the primary
goal of the types of attacks prevented by CHECKMATE is to gain access to system, a secondary
goal is to circumvent detection mechanism. The architecture mismatch notification that
CHECKMATE provides makes it difficult to do this. While illegal instructions will occur during
the normal life of the system, it is easy to recognize multiple errors of this type, and take action.

A.2.2 Architecture Limitations

This approach with a limited number of architectures is not very effective. Using this setup, the
attacker simply needs to retry the attack until the architecture of the attack matches the
application. In this example, the attacker has a 1 in 3 chance of the attack being successful.
When using this test bed, the odds of an attack being successful are proportional to the number of
architectures in the system. To increase the odds of CHECKMATE successfully stopping an
attack, more architectures need to be added to the system. Adding physical architectures to an
existing system is rarely feasible, and there are a limited number of architectures that can be
emulated. Making matters worse, there is a linear relationship to architectures added and the
overall protection. Assume you include all 8 of the major architectures that QEMU is capable of
emulating; the attacker still has a 1 in 8 chance of the attack being successful.

A.2.3 Application Limitations

Differences in applications also influence the effectiveness. Some applications, such as
OpenSSH, are started on a server and run for a very long time. For applications like this, starting
a random architecture is not effective, due to how long that instance might run. The design of an
application influences how effective this approach is at improving security. For example,
applications that have a long run time, do not see benefit from starting on a random architecture
because an attacker will have ample time to try attacks using multiple architectures. In addition,
system exploitation is not an exact science, and attackers are accustomed to having to try attacks
multiple times to gain access to a system, so multiple attempts on a long running system is
expected.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
44

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

AMBA – Advanced Microcontroller Bus Architecture

AXI – Advanced Extensible Interface

ELF – Executable and Linkable Format

FPGA – Field Programmable Gate Array

GNU – GNU’s Not Unix!

GPU – Graphics Processing Unit

HTTP – Hypertext Transfer Protocol

IPC – Inter Process Communication

RISC – Reduced instruction set computing

ROP – Return Oriented Programming

SoC – System on Chip

SQL – Structured Query Language

SSH – Secure Shell

XOR – exclusive or

	LIST OF FIGURES
	LIST OF TABLES
	1 SUMMARY
	1.1 Quantification of Protection Benefits
	1.2 Potential For Operational Deployment
	1.3 Recommendations & Future Work

	2 INTRODUCTION
	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Achieving Diversity through Heterogeneous, Remote Application Execution
	3.1.1 Application Segmentation
	3.1.2 Segmentation Experimental Setup
	3.1.3 CHECKMATE Emulation Testbed
	3.1.4 Remote Execution Interface
	3.1.4.1 Identifying Interface Boundaries

	3.1.5 Segmentation Experiment and Results

	3.2 Achieving Diversity via Synthetic Architectures
	3.2.1 Instruction Encoding for Diversity
	3.2.2 Implementing Instruction Encoding
	3.2.2.1 ARM Executable Encoder
	3.2.2.2 Instruction Encoding/Decoding with Emulation
	3.2.2.3 Emulated Instruction Encoding Experimental Setup
	3.2.2.4 Hardware Instruction Encoding
	3.2.2.5 Hardware Instruction Encoding Experimental Setup

	3.2.3 Synthetic Architecture Experimental Results

	3.3 Reducing the Attack Surface via Architectural Shifting
	3.3.1 Implementation of Architectural Shifting
	3.3.2 Instruction Multiplexing with QEMU
	3.3.3 Combined Results of Synthetic Architectures and Architectural Shifting

	4 RESULTS AND DISCUSSION
	4.1 Key Finding 1: Exponential Increase in Protection due to Diversity
	4.2 Key Finding 2: Attack Detection and Alerting
	4.3 Key Finding 3: Attack Types Prevented
	4.3.1 User Experience and Performance

	5 CONCLUSIONS
	6 RECOMMENDATIONS
	6.1 Transition CHECKMATE to TRL5 and Deploy CHECKMATE at Small Scale in an Operational Environment
	6.1.1 Example CHECKMATE Enterprise Deployment Scenario
	6.1.2 Sample Roll Out
	6.1.3 Active Exploit Scenarios
	6.1.4 Alerting and Protection System
	6.1.5 Autonomous Protection

	6.2 Extend CHECKMATE to Operate on Additional Platforms
	6.3 Develop Advanced Techniques for Achieving Synthetic, At-Scale Diversity in Future Systems
	6.4 Additional CHECKMATE Implementation Extensions and Enhancements

	7 REFERENCES
	APPENDIX
	A.1 Initial Experimentation
	A.1 Synthetic Attack Development
	A.2 Initial Findings
	A.2.1 Attack Indicator
	A.2.2 Architecture Limitations
	A.2.3 Application Limitations

	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

